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Double-hump solitary waves in quadratically nonlinear media with loss and gain
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We report the existence of a family of bright chirped localized waves in quadratic media with loss and gain.
It is shown that the fundamental field component of the symbiotic solitary wave may exhibit a double-hump
shape. The conditions of the solitary wave’s existence are identified. Numerical experiments disclose different
scenarios of instability as well as domains of rather robust behavior of these objects upon propagation.

PACS number~s!: 42.65.Tg, 03.50.De, 52.35.Sb
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It is now widely accepted that optical media with a qu
dratic, orx (2), nonlinearity exhibit a diversity of phenomen
which can be exploited in all-optical signal processing, a
plification, pulse compression, etc.~see Refs@1,2#, and ref-
erences therein!. Recent investigations also reveal many
teresting fundamental properties ofx (2) media. In particular,
different types of dichromatic solitary waves@mutually
locked fundamental field~FF! and second harmonic~SH!# in
conservative quadratic media were identified and their po
tial use for signal routing and steering was discussed@3,4#.
The experimental observation of spatial soliton propaga
in quadratic bulk media@5# and film waveguides@6#, includ-
ing their interactions@7#, as well as the existence of narro
temporal@8# and spatiotemporal solitons~light bullets! @9#,
are additional stimulating factors for further studies of so
tonic regimes in thex (2) environment.

Many realistic physical systems exhibit inherent loss
which may lead to adiabatic soliton shaping or even soli
decay @10#. Recently it was numerically shown by Torne
@11# that a linear gain experienced by the FF is redistribu
between harmonics, and this process can be used for so
amplification. To realize a~quasi!stable solitonic regime in
nonconservative systems, optical amplifiers are required
loss compensation. Thus the study of solitary wave propa
tion under the combined action of gain and loss is a pra
cally relevant issue. In cubic media such investigations h
a long history. In this environment the evolution is govern
by the complex Ginzburg-Landau equation. A survey on d
ferent solutions to this equation and to its modified versio
can be found in Ref.@12#. Very recently taking loss and gai
effects into account it was shown that robust, but eventu
unstable, dichromatic shocklike@13# and single-hump
chirped bright solitary@14# waves may exist in a quadrati
medium.

In this paper, we aim to identify double-hump chirpe
solitary waves in nonconservative quadratic media, and
prove their robustness numerically. We emphasize that
Ginzburg-Landau equation admits shocklike and bright s
tary solutions, but no double-hump ones. As far as conse
tive systems are concerned, double-hump solitary wa
have been shown to exist in homogeneous@15# as well as
corrugated@16# x (2) media. They are unstable with variou
decay scenarios@15# in the former case, whereas they a
stable in Bragg waveguides@16#.
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The system of equations describing pulse or beam pro
gation in a quadratically nonlinear medium with loss a
gain, which in Ref.@14# was calledx (2) Ginzburg-Landau
equations, has the form

iAx1D1Ass12A* B1 ig1A50, ~1a!

iBx1kB1D2Bss1A21 ig2B50, ~1b!

wherex is the propagation distance,s is the transverse coor
dinate in the spatial or retarded time in the temporal caseA
andB are normalized envelopes of the first and second h
monics,k is the phase mismatch,g1,2 are linear gain or loss
coefficients, andD1,25D1,28 1 iD 1,29 are complex valued coef
ficients, whereD1,28 accounts for dispersion and diffractio
and D1,29 for bandwidth-limited amplification or filtering in
the temporal case. In the spatial caseD1,29 occurs in the equa-
tions for the mean fields if the optical axis fluctuates arou
a zero mean~the fluctuating spatial walk off! @13#.

System~1! has double-hump~in the fundamental field!
chirped bright solitary wave solutions

A5a sinh~ls!@cosh~ls!#221 i«ei ~Qx1w1!,

B5b@cosh~ls!#2212i«ei ~2Qx1w2!, ~2!

where the amplitudes and the relative phase are given b

a454b2l4uD2u2~4«4113«219!,

b25l4uD1u2~«4113«2136!/4, ~3!

tan~w222w1!5
62«225d1«

d1~62«2!15«
, ~4!

where the chirp parameter« is a solution of

2~d11d2!~«4220«219!115~d1d221!~«323«!50.
~5!

The width parameter and soliton wave vector are

l25g1 /D19~«212«d121!.0, ~6!

Q5l2D19@d1~«221!22«#, ~7!
3267 ©2000 The American Physical Society
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respectively, where we have introducedd1,25D1,28 /D1,29 .
This exact solution exist if the constraints

2g1D29~12«d2!5g2D19~«212«d121!, ~8!

k52l2@~12«2!D1812«D191D281«D29# ~9!

are satisfied. These constraints ensure the balances bet
gain and loss and between up and down conversion w
are necessary for stationary solutions to exist. An analysi
the constraints reveals that solutions exist in different
mains of parameter space.

Both the shapes and the phases of the double hump s
tions ~2! are shown in Fig. 1 for a particular set of syste
parameters. We note a nonzero relative phase shift in
soliton center@cf. Eq. ~4!#. The stability of the solitary wave
solution was checked numerically. For this purpose we h
performed extensive numerical experiments by using the
act soliton solution~2! for various consistent combination
of the relevant system parameters as initial conditions for
system~1!. Strictly speaking, all solutions turned out to b
unstable exhibiting different instability scenarios. But o
studies also revealed domains where the solutions pro
quite robust. A typical evolution of the FF and SH comp
nents in the domain of robustness is displayed in Fig. 2.
anticipated onset of background instability has been
served for large propagation distances, i.e., more than
diffraction or dispersion lengths. This instability manifes
itself by creating new peaks on the soliton tails which a
spread away from the main part of the soliton, eventua
leading to a stochastic field pattern. Another kind of evo
tion is shown in Fig. 3, where an initially single hump S
field splits into two parts, this process being initiated by t
double hump FF. These two double-hump fields creat
bound state that propagates up to a distance where the b
ground instability comes into play.

FIG. 1. Amplitude and phase profiles of the solution~2!; system
parameters:g150.07, g2520.05, d15d2522, D1* 520.5, D2*
520.25, andk520.06, resulting in the soliton parameters«
51.03,l50.18,a50.16,b50.13,w150, and tan(w2)523.25.
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System~1! admits some interesting particular solution
Here we mention three of them permitting an explicit rep
sentation of the soliton parameters in terms of system par
eters. The first one is a chirp-free solution,«50, existing for
d152d2 , including the dispersionless limitd15d250. For
d152d2 , e.g., opposite signs of dispersion, the expressi
for the FF and SH amplitudes and width parameter simp
to

b25Ug1

g2
Ua259g1

2~11d1
2!, l252

g1

D19
5

g2

2D29
.0.

~10!

We note that the existence of chirp-free solutions is a
markable fact for a non-conservative system, e.g., they
not appear in the~cubic! Ginzburg-Landau equation. Th
evolution of this solution is shown in Fig. 4. It is evident th
the soliton preserves its shape, but that its amplitude
width oscillate upon propagation until the soliton breaks u
~not shown in Fig. 4!.

Other particular solutions occur if the~i! SH or ~ii ! FF
absorption or gain equal zero (g250 or g150, respectively!,
and the net gain of either wave vanishes, i.e., the peak
equals the losses. In case~i! the solution parameters are

FIG. 2. Robust evolution of the FF and SH of solution~2!;
parameters as in Fig. 1.

FIG. 3. Evolution of the FF and SH of solution~2!; parameters:
g1520.39, g250.1, d15d2522, D1* 520.5, D2* 520.25, and
k520.27 leading to«522.90, l50.2, a50.56, b50.34, w1

50, and tan(w2)53.25.
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«5d2
21, l25

g1d2
2~27d2

222!

D19~3d2
212!~3d2

221!
.0,

and the relationd15d2@(18d2
2213)#/@(27d2

222)# must be
satisfied. The normalized widthw5l21Aug1 /D19u as a func-
tion of the parameterd2 is shown in Fig. 5 for (g1D19).0.
As can be inferred from Fig. 5, the solution exists for
,ud2u,A2/27 andud2u.1/). In case~ii ! there are two so-
lutions with the respective chirp«652d16A11d1

2 and
width parametersl6

2 5g2 /@2D29(12«6d2)#.0. Equation
~5! provides the relation between the parametersd1 andd2 .

In conclusion, we find a family of exact chirped doubl

FIG. 4. Evolution of a chirp-free soliton for the parametersg1

520.05, g250.05, d152d2522, D1* 520.5, D2* 520.25, k
50.1, l50.316,a50.33,b50.33,w150, and tan(w2)520.5.
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hump solitary-wave solutions to the system of equations
scribing the wave propagation in quadratic nonlinear me
with loss and gain. The system parameter constraints for
solutions to exist are the consequences of the mutual bal
ing of gain and loss as well as up and down convers
processes. Numerics reveal various instability scenarios,
also domains of fairly robust behavior of these waves.
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FIG. 5. Normalized soliton widthw as a function of the disper
sion parameterd2 for g250.
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